Binary Asset with Single Barrier Option

Vector Risk Pty Ltd

April 06, 2017

Version 8.0.7905

1 Input to Function

Description	Symbol	min	max	Reasonable range
Underlying	S	0^{+}	$+\infty$	
Strike	X	0^{+}	$+\infty$	
Barrier level	H	0^{+}	$+\infty$	
Continuous risk-free interest rate	r	0^{+}	$+\infty$	
Continuous secondary rate	q	0^{+}	$+\infty$	
Volatility	σ	0^{+}	$+\infty$	
Time to maturity	T	0^{+}	$+\infty$	
Put or Call		_	_	"P", "C"
Up or Down	indicator	_	_	"U", "D"
In or Out		_	-	"I", "O"

Table 1: Inputs for Binary Asset with Single Barrier Option pricing function

2 Formula

For a binary asset with single barrier option, the value is given by 1

Down-and-in call $(S > H)$ Payoff: S_T if $S_t \le H$ for som Value: $(X > H)$: Value: $(X < H)$:	e $0 \le t \le T$ and $S_T > X$, zero otherwise. A_3 $A_1 - A_2 + A_4$	$\begin{split} \eta &= 1\\ \eta &= 1, \end{split}$	$\phi = 1$
Up-and-in call $(S < H)$ Payoff: S_T if $S_t \ge H$ for som Value: $(X > H)$: Value: $(X < H)$:	e $0 \le t \le T$ and $S_T > X$, zero otherwise. A_1 $A_2 - A_3 + A_4$	$\eta = -1,$	$\begin{array}{l} \phi = 1 \\ \phi = 1 \end{array}$
Down-and-in put $(S > H)$ Payoff: S_T if $S_t \le H$ for som Value: $(X > H)$: Value: $(X < H)$:		$\eta = 1,$	$\begin{array}{l} \phi = -1 \\ \phi = -1 \end{array}$
Up-and-in put $(S < H)$ Payoff: S_T if $S_t \ge H$ for som Value: $(X > H)$: Value: $(X < H)$:	e $0 \le t \le T$ and $S_T < X$, zero otherwise. $A_1 - A_2 + A_4$ A_3	$\begin{array}{l} \eta = -1, \\ \eta = -1 \end{array}$	$\phi = -1$

¹Haug (2007) p.176 4.19.5 Binary Barrier Options

Vector Risk

5) Down-and-out call $(S > H)$ Payoff: S_T if $S_t > H$ for all Value: $(X > H)$: Value: $(X < H)$:	$0 \le t \le T$ and $S_T > X$, zero otherwise. $A_1 - A_3$	$\begin{split} \eta &= 1, \\ \eta &= 1, \end{split}$	
6) Up-and-out call $(S < H)$			
Payoff: S_T if $S_t < H$ for all	$0 \leq t \leq T$ and $S_T > X$, zero otherwise.		
Value: $(X > H)$:	$\frac{1}{0}$ – $\frac{1}{2}$		
Value: $(X < H)$:	$A_1 - A_2 + A_3 - A_4$	$\eta = -1,$	$\phi = 1$
7) Down-and-out put $(S > H)$			
Payoff: S_T if $S_t > H$ for all	$0 \leq t \leq T$ and $S_T < X$, zero otherwise.		
Value: $(X > H)$:		$\eta = 1,$	$\phi = -1$
Value: $(X < H)$:	0	-	
8) Up-and-out put $(S < H)$			

Payoff: S_T if $S_t < H$ for all $0 \le t \le T$ and $S_T < X$, zero otherwise. Value: (X > H): $A_2 - A_4$ $\eta = -1$, Value: (X < H): $A_1 - A_3$ $\eta = -1$,

where

$$\begin{split} A_1 &= Se^{-qT}N\left(\phi d_1\right) & A_2 &= Se^{-qT}N\left(\phi h_1\right) \\ A_3 &= Se^{-qT}\left(\frac{H}{S}\right)^{2(\mu+1)}N\left(\eta y_1\right) & A_4 &= Se^{-qT}\left(\frac{H}{S}\right)^{2(\mu+1)}N\left(\eta y_3\right) \\ d_1 &= \frac{\ln\frac{S}{X}}{\sigma\sqrt{T}} + (\mu+1)\sigma\sqrt{T} & h_1 &= \frac{\ln\frac{S}{H}}{\sigma\sqrt{T}} + (\mu+1)\sigma\sqrt{T} \\ y_1 &= \frac{\ln\frac{H^2}{SX}}{\sigma\sqrt{T}} + (\mu+1)\sigma\sqrt{T} & y_3 &= \frac{\ln\frac{H}{S}}{\sigma\sqrt{T}} + (\mu+1)\sigma\sqrt{T} \\ \mu &= \frac{r-q-\frac{\sigma^2}{2}}{\sigma^2}. \end{split}$$

 $\phi = -1$

 $\phi = -1$

3 Properties of Instrument

Reiner and Rubinstein (1991) introduced a set of formulae that can value binary asset with single barrier options. Binary asset with single barrier options are standard binary asset-or-nothing options, with a single barrier, in which the payoff of the options depend on whether the single barrier is touched. It can also be viewed as a standard single barrier option with binary asset payoff.

For a knock-out type option, the payoff is as for a binary asset-or-nothing option, provided that the barrier was *not* touched during the life of the option, and zero otherwise.

For a knock-in type option, the payoff is as for a binary asset-or-nothing option, provided that the barrier *was* touched during the life of the option, and zero otherwise.

Bibliography

Espen Gaarder Haug. The Complete Guide To Option Pricing Formulas. McGraw Hill, New York, 2nd edition, 2007. Eric Reiner and Mark Rubinstein. Unscrambling the binary code. Risk, 4(9):75–83, October 1991.