Binary Cash with Single Barrier Option

Vector Risk Pty Ltd

April 06, 2017

Version 8.0.7905

1 Input to Function

Description	Symbol	min	max	Reasonable range
Underlying	S	0^{+}	$+\infty$	
Strike	X	0^{+}	$+\infty$	
Barrier level	H	0^{+}	$+\infty$	
Cash amount payoff	K	0^{+}	$+\infty$	
Continuous risk-free interest rate	r	0^{+}	$+\infty$	
Continuous secondary rate	q	0^{+}	$+\infty$	
Volatility	σ	0^{+}	$+\infty$	
Time to maturity	T	0^{+}	$+\infty$	
Put or Call		_	_	"P", "C"
Up or Down	indicator	_	_	"U", "D"
In or Out		_	_	"I", "O"

Table 1: Inputs for Binary Cash with Single Barrier Option pricing function

2 Formula

For a binary cash with single barrier option, the value is given by 1

1) Down-and-in call $(S > H)$ Payoff: K if $S_t \le H$ for som Value: $(X > H)$: Value: $(X < H)$:	the $0 \le t \le T$ and $S_T > X$, zero otherwise. B_3 $B_1 - B_2 + B_4$	$\begin{split} \eta &= 1\\ \eta &= 1, \end{split}$	$\phi = 1$
Value: $(X > H)$:	the $0 \le t \le T$ and $S_T > X$, zero otherwise. B_1 $B_2 - B_3 + B_4$	$\eta = -1,$	$\begin{split} \phi &= 1\\ \phi &= 1 \end{split}$
3) Down-and-in put $(S > H)$ Payoff: K if $S_t \le H$ for som Value: $(X > H)$: Value: $(X < H)$:	the $0 \le t \le T$ and $S_T < X$, zero otherwise. $B_2 - B_3 + B_4$ B_1	$\eta = 1,$	$\begin{split} \phi &= -1 \\ \phi &= -1 \end{split}$
•	the $0 \le t \le T$ and $S_T < X$, zero otherwise. $B_1 - B_2 + B_4$ B_3	$\begin{split} \eta &= -1, \\ \eta &= -1 \end{split}$	$\phi = -1$

¹Haug (2007) p.176 4.19.5 Binary Barrier Options

5) Down-and-out call (S > H)Payoff: K if $S_t > H$ for all $0 \le t \le T$ and $S_T > X$, zero otherwise. $B_1 - B_3$ Value: (X > H): $\eta = 1,$ $\phi = 1$ Value: (X < H): $B_2 - B_4$ $\eta = 1,$ $\phi = 1$ 6) Up-and-out call (S < H)Payoff: K if $S_t < H$ for all $0 \le t \le T$ and $S_T > X$, zero otherwise. Value: (X > H): Value: (X < H): $B_1 - B_2 + B_3 - B_4$ $\eta = -1,$ $\phi = 1$ 7) Down-and-out put (S > H)Payoff: K if $S_t > H$ for all $0 \le t \le T$ and $S_T < X$, zero otherwise. Value: (X > H): $B_1 - B_2 + B_3 - B_4$ $\eta = 1,$ $\phi = -1$ Value: (X < H): 8) Up-and-out put (S < H)Payoff: K if $S_t < H$ for all $0 \le t \le T$ and $S_T < X$, zero otherwise. $\begin{array}{l}B_2 - B_4\\B_1 - B_3\end{array}$ Value: (X > H): $\eta = -1$, $\phi = -1$ Value: (X < H): $\eta = -1,$ $\phi = -1$

where

$$B_{1} = Ke^{-rT}N(\phi d_{2}) \qquad B_{2} = Ke^{-rT}N(\phi h_{2})$$

$$B_{3} = Ke^{-rT}\left(\frac{H}{S}\right)^{2\mu}N(\eta y_{2}) \qquad B_{4} = Ke^{-rT}\left(\frac{H}{S}\right)^{2\mu}N(\eta y_{4})$$

$$d_{2} = \frac{\ln\frac{S}{X}}{\sigma\sqrt{T}} + \mu\sigma\sqrt{T} \qquad h_{2} = \frac{\ln\frac{S}{H}}{\sigma\sqrt{T}} + \mu\sigma\sqrt{T}$$

$$y_{2} = \frac{\ln\frac{H^{2}}{SX}}{\sigma\sqrt{T}} + \mu\sigma\sqrt{T} \qquad y_{4} = \frac{\ln\frac{H}{S}}{\sigma\sqrt{T}} + \mu\sigma\sqrt{T}$$

$$\mu = \frac{r - q - \frac{\sigma^{2}}{2}}{\sigma^{2}}.$$

3 Properties of Instrument

Reiner and Rubinstein (1991) introduced a set of formulae that can value binary cash with single barrier options. Binary cash with single barrier options are standard binary cash-or-nothing options, with a single barrier, where the payoff of the option is dependent on whether the barrier is touched. It can also be viewed as a standard single barrier option with binary cash payoff.

For a knock-out type option, the payoff is as for a binary cash-or-nothing option, provided the barrier was *not* touched during the life of the option, and zero otherwise.

For a knock-in type option, the payoff is as for a binary cash-or-nothing option, provided the barrier *was* touched during the life of the option, and zero otherwise.

Bibliography

Espen Gaarder Haug. The Complete Guide To Option Pricing Formulas. McGraw Hill, New York, 2nd edition, 2007.

Eric Reiner and Mark Rubinstein. Unscrambling the binary code. Risk, 4(9):75-83, October 1991.