Binary Gap Option

Vector Risk Pty Ltd

April 06, 2017

Version 8.0.7905

1 Inputs to Function

Description	Symbol	min	max	Reasonable range
Underlying	S	0^{+}	$+\infty$	
Deciding strike price	X_1	0^{+}	$+\infty$	
Payoff strike price	X_2	0^{+}	$+\infty$	
Continuous risk-free interest rate	r	0^{+}	$+\infty$	
Continuous secondary rate	q	0^{+}	$+\infty$	
Volatility	σ	0^{+}	$+\infty$	
Time to maturity	T	0^{+}	$+\infty$	
Put or Call	indicator	_	_	"P", "C"

Table 1: Inputs for Binary Gap Option pricing function

2 Formula

Hull $(2000)^1$ stated that the valuation of *binary gap* options can be made using one of the formulae described by Reiner and Rubinstein (1991),

 $\left(\phi S e^{-qT} N(\phi d_1) - \phi X_2 e^{-rT} N(\phi d_2)\right)$

where

$$d_{1} = \frac{\ln \frac{S}{X_{1}} + \left(r - q + \frac{\sigma^{2}}{2}\right)T}{\sigma\sqrt{T}} \qquad \qquad d_{2} = d_{1} - \sigma\sqrt{T}.$$

$$\frac{\phi \quad \text{Option Type}}{-1 \qquad \text{Put}}$$

$$1 \qquad \text{Call}$$

3 Properties of Instrument

A binary gap option, effectively has two strike values,

1) a 'deciding' strike X_1 and

2) a payoff strike X_2 ,

giving option payoffs as in Table 2, Figure 1 and Figure 2, where S_T represents the value of the underlying at expiry.

¹Hull (2000) p.464, Binary Options

Option Type	Condition	Payoff
Call	$S_T \le X_1$ $S_T > X_1$	$\begin{array}{c} 0\\ S_T - X_2 \end{array}$
Put	$S_T \ge X_1$ $S_T < X_1$	$\begin{array}{c} 0\\ X_2 - S_T \end{array}$

Table 2: Payoff at maturity for binary gap option

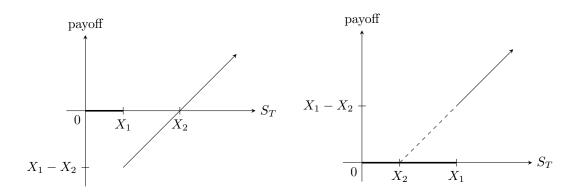


Figure 1: Payoff for binary gap call option

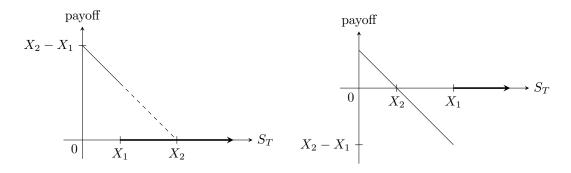


Figure 2: Payoff for binary gap put option

Bibliography

John C. Hull. *Options, Futures and Other Derivatives*. Prentice Hall, Upper Saddle River, New Jersey, 4th edition, 2000.

Eric Reiner and Mark Rubinstein. Unscrambling the binary code. Risk, 4(9):75-83, October 1991.