Compound Option

Vector Risk Pty Ltd

April 06, 2017

Version 8.0.7905

1 Inputs to Function

Description	Symbol	min	max	Reasonable range
Underlying	S	0^{+}	$+\infty$	
Strike of compound option	x_1	0^{+}	$+\infty$	
Strike of underlying option	X_2	0^{+}	$+\infty$	
Continuous risk-free interest rate up to t_1	r_1	0^{+}	$+\infty$	
Continuous secondary rate up to t_1	q_1	0^{+}	$+\infty$	
Volatility up to t_1	σ_1	0^{+}	$+\infty$	
Time to maturity of compound option	t_1	0^{+}	$< T_{2}$	
Continuous risk-free interest rate up to T_2	r_2	0^{+}	$+\infty$	
Continuous secondary rate up to T_2	q_2	0^{+}	$+\infty$	
Volatility up to T_2	σ_2	0^{+}	$+\infty$	
Time to maturity of underlying option	T_2	$> t_1$	$+\infty$	
Compound Put or Call	indicatorC	_	_	"P", "C"
Underlying Put or Call	indicator U	_	-	"P", "C"

Table 1: Inputs for Compound Option pricing function

2 Formula

The value of a compound option is given by

$$\phi\eta Se^{-q_2T_2}N_2\left(\phi\eta a_1,\eta b_1;\phi\rho\right) - \phi\eta X_2 e^{-r_2T_2}N_2\left(\phi\eta a_2,\eta b_2;\phi\rho\right) - \phi x_1 e^{-r_1t_1}N\left(\phi\eta a_2\right),$$

where

$$a_{1} = \frac{\ln \frac{S}{f} + \left(r_{1} - q_{1} + \frac{\sigma_{1}^{2}}{2}\right)t_{1}}{\sigma_{1}\sqrt{t_{1}}} \qquad a_{2} = a_{1} - \sigma_{1}\sqrt{t_{1}}$$

$$b_{1} = \frac{\ln \frac{S}{X_{2}} + \left(r_{2} - q_{2} + \frac{\sigma_{2}^{2}}{2}\right)T_{2}}{\sigma_{2}\sqrt{T_{2}}} \qquad b_{2} = b_{1} - \sigma_{2}\sqrt{T_{2}}$$

$$\rho = \frac{\sigma_{1}\sqrt{t_{1}}}{\sigma_{2}\sqrt{T_{2}}},$$

$$\frac{\frac{\phi \quad \text{Compound Option}}{-1 \quad \text{Put}} \frac{\eta \quad \text{Underlying Option}}{-1 \quad \text{Put}}{1 \quad \text{Call}}$$

and f solves

$$\eta f e^{-q_{12}(T_2 - t_1)} N(\eta z_1) - \eta X_2 e^{-r_{12}(T_2 - t_1)} N(\eta z_2) - x_1 = 0,$$

where

$$z_1 = \frac{\ln \frac{f}{X_2} + \left(r_{12} - q_{12} + \frac{\sigma_{12}^2}{2}\right)(T_2 - t_1)}{\sigma_{12}\sqrt{T_2 - t_1}} \qquad \qquad z_2 = z_1 - \sigma_{12}\sqrt{T_2 - t_1},$$

and r_{12} , q_{12} and σ_{12} denote the forward interest, secondary and volatility rates between time t_1 and T_2 .

3 Properties of Instrument

Both Geske (1979) and Rubinstein (1991) published formulae for valuing compound options. Compound options are options-on-options with a strike price x_1 at time t_1 to either buy (call) or sell (put) another option (either call or put) with strike X_2 and maturity T_2 . This can be broken down into four scenarios:

- 1) call-on-call: at t_1 the holder has the right to buy a T_2 maturing call option with strike X_2 , for x_1 ,
- 2) call-on-put: at t_1 the holder has the right to buy a T_2 maturing put option with strike X_2 , for x_1 ,
- 3) put-on-call: at t_1 the holder has the right to sell a T_2 maturing call option with strike X_2 , for x_1 , and
- 4) put-on-put: at t_1 the holder has the right to sell a T_2 maturing put option with strike X_2 , for x_1 .

We extend their work to obtain valuation function for the non-flat case.

Bibliography

Robert Geske. The valuation of compound options. Journal of Financial Economics, 7:63-81, 1979.

Mark Rubinstein. Double trouble. Risk, 5:73, December 1991.