Double Pin Barrier Option

Vector Risk Pty Ltd

April 06, 2017

Version 8.0.7905

1 Input to Function

Description	Symbol	min	max	Reasonable range
Underlying price	S	0^{+}	$+\infty$	
Strike price	X	0^{+}	$+\infty$	
Lower barrier level	L	0^{+}	< U	
Upper barrier level	U	>L	$+\infty$	
Continuous risk-free interest rate till t_1	r_1	0^{+}	$+\infty$	
Continuous secondary rate till t_1	q_1	0^{+}	$+\infty$	
Volatility till t_1	σ_1	0^{+}	$+\infty$	
Time to barrier observation	t_1	0^{+}	$< T_2$	
Continuous risk-free interest rate till T_2	r_2	0^{+}	$+\infty$	
Continuous secondary rate till T_2	q_2	0^{+}	$+\infty$	
Volatility till T_2	σ_2	0^{+}	$+\infty$	
Time to option maturity	T_2	$> t_1$	$+\infty$	
Put or Call	in director	_	_	"P", "C"
In or Out	indicator	_	_	"I", "O"

Table 1: Inputs for Double Pin Barrier Option pricing function

2 Formula

The value of a knock-out type double pin barrier option is

$$\phi S e^{-q_2 T_2} \left[N_2 \left(l_1, \phi b_1; \phi \rho \right) - N_2 \left(u_1, \phi b_1; \phi \rho \right) \right] - \phi X e^{-r_2 T_2} \left[N_2 \left(l_2, \phi b_2; \phi \rho \right) - N_2 \left(u_2, \phi b_2; \phi \rho \right) \right],$$

where

$$\begin{split} l_1 &= \frac{\ln \frac{S}{L} + \left(r_1 - q_1 + \frac{\sigma_1^2}{2}\right) t_1}{\sigma_1 \sqrt{t_1}} & l_2 = l_1 - \sigma_1 \sqrt{t_1} \\ u_1 &= \frac{\ln \frac{S}{U} + \left(r_1 - q_1 + \frac{\sigma_1^2}{2}\right) t_1}{\sigma_1 \sqrt{t_1}} & u_2 = u_1 - \sigma_1 \sqrt{t_1} \\ b_1 &= \frac{\ln \frac{S}{X} + \left(r_2 - q_2 + \frac{\sigma_2^2}{2}\right) T_2}{\sigma_2 \sqrt{T_2}} & b_2 = b_1 - \sigma_2 \sqrt{T_2} \\ \rho &= \frac{\sigma_1 \sqrt{t_1}}{\sigma_2 \sqrt{T_2}}. \end{split}$$

ϕ	Option Type
-1	Put
1	Call

The value of a knock-in type double pin barrier option is equal to a long position in the equivalent vanilla option and a short position in the equivalent knock-out type double pin barrier.

For a knock-in type *double pin barrier* option, the value is

 $\overbrace{\phi Se^{-q_2T_2}N(\phi b_1) - \phi Xe^{-r_2T_2}N(\phi b_2)}_{-\phi Se^{-q_2T_2}[N_2(l_1,\phi b_1;\phi \rho) - N_2(u_1,\phi b_1;\phi \rho)] + \phi Xe^{-r_2T_2}[N_2(l_2,\phi b_2;\phi \rho) - N_2(u_2,\phi b_2;\phi \rho)]. }$

3 Properties of Instrument

Consider a double pin barrier option, an option with upper and lower barriers that are only applicable at one point during the option lifetime, at time t_1 .

For a knock-in type double pin barrier option, the payoff is as for a vanilla option, provided the spot rate is *outside* the upper and lower barriers at time t_1 . For a knock-out type double pin barrier option, the payoff is as for a vanilla option provided the spot rate is *between* the barrier levels at time t_1 . Knock-in type barrier options are valued by taking the difference between the value of an equivalent vanilla option at maturity and the value of the corresponding knock-out barrier option.