Simple Chooser Option

Vector Risk Pty Ltd

April 06, 2017

Version 8.0.7905

1 Inputs to Function

Description	Symbol	min	max	Reasonable range
Underlying	S	0^{+}	$+\infty$	
Strike price	X	0^{+}	$+\infty$	
Volatility until t_1	σ_1	0^{+}	$+\infty$	
Time to decision date	t_1	0^{+}	$< T_2$	
Continuous risk-free interest rate up to	r_2	0^{+}	$+\infty$	
T_2				
Continuous secondary rate up to T_2	q_2	0^{+}	$+\infty$	
Volatility until T_2	σ_2	0^{+}	$+\infty$	
Time to maturity	T_2	$> t_1$	$+\infty$	

Table 1: Inputs for Simple Chooser Option pricing function

2 Formula

The value of a *simple chooser* option is

$$\left(Se^{-q_{2}T_{2}}\left[N\left(d\right)-N\left(-y\right)\right]-Xe^{-r_{2}T_{2}}\left[N\left(d-\sigma_{2}\sqrt{T_{2}}\right)-N\left(-y+\sigma_{1}\sqrt{t_{1}}\right)\right],\right)$$

where

$$d = \frac{\ln \frac{S}{X} + \left(r_2 - q_2 + \frac{\sigma_2^2}{2}\right)T_2}{\sigma_2\sqrt{T_2}} \qquad \qquad y = \frac{\ln \frac{S}{X} + \left(r_2 - q_2\right)T_2 + \frac{\sigma_1^2}{2}t_1}{\sigma_1\sqrt{t_1}}.$$

3 Properties of Instrument

Rubinstein (1991) introduced chooser options which allow the holder to choose whether the option 'becomes' a standard call or put after a given time t_1 . A simple chooser option has constant strike X and time to maturity T_2 for both call and put options.¹

The payoff of a simple chooser option at time t_1 , $(t_1 < T_2)$ is thus

$$\max \{ C(S_{t_1}, X, T_2 - t_1), P(S_{t_1}, X, T_2 - t_1) \}$$

where C() and P() are the values of a Generalised Black-Scholes call and put option respectively, with uncertain underlying S_{t_1} (the value of the underlying at time t_1), strike X and time to maturity $(T_2 - t_1)$.

¹Haug (2007), p.128, 4.12.1 Simple Chooser Options

Bibliography

Espen Gaarder Haug. The Complete Guide To Option Pricing Formulas. McGraw Hill, New York, 2nd edition, 2007. Mark Rubinstein. Options for the undecided. Risk, 4(4):43, April 1991.