Single Barrier Option

Vector Risk Pty Ltd

April 06, 2017

Version 8.0.7905

1 Input to Function

Description	Symbol	min	max	$Reasonable\ range$
Underlying	S	0^{+}	$+\infty$	
Strike	X	0^{+}	$+\infty$	
Barrier level	H	0^{+}	$+\infty$	
Cash amount payoff	K	0^{+}	$+\infty$	
Continuous risk-free interest rate	r	0^{+}	$+\infty$	
Continuous secondary rate	q	0^{+}	$+\infty$	
Volatility	σ	0^{+}	$+\infty$	
Time to maturity	T	0^{+}	$+\infty$	
Put or Call		_	_	"P", "C"
Up or Down	indicator	_	_	"U", "D"
In or Out		_	-	"I", "O"

Table 1: Inputs for Single Barrier Option pricing function

2 Formula

The value of a *single barrier* option is given by Haug (2007) as

1) Down-and-in call (S > H) Payoff: max $(S_T - X, 0)$ if $S_t \le H$ for some $0 \le t \le T$, K at expiration otherwise. Value: (X > H): C + EValue: (X < H): A - B + D + E $\eta = 1$, $\phi = 1$ $\eta = 1$, $\phi = 1$

2) Up-and-in call (S < H) Payoff: max $(S_T - X, 0)$ if $S_t \ge H$ for some $0 \le t \le T$, K at expiration otherwise. Value: (X > H): A + EValue: (X < H): B - C + D + E $\eta = -1$, $\phi = 1$ $\eta = -1$, $\phi = 1$

4) Up-and-in put (S < H) Payoff: max $(X - S_T, 0)$ if $S_t \ge H$ for some $0 \le t \le T$, K at expiration otherwise. Value: (X > H): A - B + D + E $\eta = -1$, $\phi = -1$ Value: (X < H): C + E $\eta = -1$, $\phi = -1$

5) Down-and-out call (S > H) Payoff: max $(S_T - X, 0)$ if $S_t > H$ for all $0 \le t \le T$, K at touch otherwise. Value: (X > H): A - C + FValue: (X < H): B - D + F $\eta = 1$, $\phi = 1$ $\eta = 1$, $\phi = 1$

- 6) Up-and-out call (S < H) Payoff: max $(S_T X, 0)$ if $S_t < H$ for all $0 \le t \le T$, K at touch otherwise. Value: (X > H): F $\eta = -1$, $\phi = 1$ Value: (X < H): A - B + C - D + F $\eta = -1$, $\phi = 1$
- 7) Down-and-out put (S > H) Payoff: max $(X S_T, 0)$ if $S_t > H$ for all $0 \le t \le T$, K at touch otherwise. Value: (X > H): A - B + C - D + F $\eta = 1$, $\phi = -1$ Value: (X < H): F $\eta = 1$, $\phi = -1$

8) Up-and-out put (S < H) Payoff: max $(X - S_T, 0)$ if $S_t > H$ for all $0 \le t \le T$, K at touch otherwise. Value: (X > H): B - D + FValue: (X < H): A - C + F $\eta = -1$, $\phi = -1$ $\eta = -1$, $\phi = -1$

where

$$\begin{split} &A = \phi S e^{-qT} N\left(\phi d_{1}\right) - \phi X e^{-rT} N\left(\phi d_{2}\right) \\ &B = \phi S e^{-qT} N\left(\phi h_{1}\right) - \phi X e^{-rT} N\left(\phi h_{2}\right) \\ &C = \phi S e^{-qT} \left(\frac{H}{S}\right)^{2(\mu+1)} N\left(\eta y_{1}\right) - \phi X e^{-rT} \left(\frac{H}{S}\right)^{2\mu} N\left(\eta y_{2}\right) \\ &D = \phi S e^{-qT} \left(\frac{H}{S}\right)^{2(\mu+1)} N\left(\eta y_{3}\right) - \phi X e^{-rT} \left(\frac{H}{S}\right)^{2\mu} N\left(\eta y_{4}\right) \\ &E = K e^{-rT} \left[N\left(\eta h_{2}\right) - \left(\frac{H}{S}\right)^{2\mu} N\left(\eta y_{4}\right)\right] \\ &F = K \left[\left(\frac{H}{S}\right)^{\mu+\lambda} N\left(\eta z\right) + \left(\frac{H}{S}\right)^{\mu-\lambda} N\left(\eta z - 2\eta\lambda\sigma\sqrt{T}\right)\right], \end{split}$$

and

$$\begin{split} d_1 &= \frac{\ln \frac{S}{X}}{\sigma \sqrt{T}} + (\mu + 1) \sigma \sqrt{T} & d_2 = d_1 - \sigma \sqrt{T} \\ h_1 &= \frac{\ln \frac{S}{H}}{\sigma \sqrt{T}} + (\mu + 1) \sigma \sqrt{T} & h_2 = h_1 - \sigma \sqrt{T} \\ y_1 &= \frac{\ln \frac{H^2}{SX}}{\sigma \sqrt{T}} + (\mu + 1) \sigma \sqrt{T} & y_2 = y_1 - \sigma \sqrt{T} \\ y_3 &= \frac{\ln \frac{H}{S}}{\sigma \sqrt{T}} + (\mu + 1) \sigma \sqrt{T} & y_4 = y_3 - \sigma \sqrt{T} \\ \mu &= \frac{r - q - \frac{\sigma^2}{2}}{\sigma^2} & \lambda = \sqrt{\mu^2 + \frac{2r}{\sigma^2}} \\ z &= \frac{\ln \frac{H}{S}}{\sigma \sqrt{T}} + \lambda \sigma \sqrt{T}. \end{split}$$

3 Properties of Instrument

Merton (1973) and Reiner and Rubinstein (1991) have developed the formulae for pricing standard single barrier options¹ — options that have a payoff contingent on whether the barrier is hit during its life.

For a knock-out type option, the payoff is vanilla provided the barrier is *not* touched during the life of the option, and the rebate amount otherwise.

For a knock-in type option, the payoff is vanilla provided the barrier *is* touched during the life of the option, and the rebate amount otherwise.

¹Haug (2007) p.152 4.17.1 Standard Single Barrier Options

Bibliography

Espen Gaarder Haug. The Complete Guide To Option Pricing Formulas. McGraw Hill, New York, 2nd edition, 2007.

Robert Cox Merton. Theory of rational option pricing. *Bell Journal of Economics and Management Science*, 4(1): 141–183, Spring 1973.

Eric Reiner and Mark Rubinstein. Breaking down the barriers. Risk, 4(8):28–35, September 1991.