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1 Input to Function

Description Symbol min max Reasonable range

Underlying S 0+ +∞
Strike X 0+ +∞
Barrier level H 0+ +∞
Cash amount payoff K 0+ +∞
Continuous risk-free interest rate r 0+ +∞
Continuous secondary rate q 0+ +∞
Volatility σ 0+ +∞
Time to maturity T 0+ +∞
Put or Call – – “P”, “C”
Up or Down indicator – – “U”, “D”
In or Out – – “I”, “O”

Table 1: Inputs for Single Barrier Option pricing function

2 Formula

The value of a single barrier option is given by Haug (2007) as

1) Down-and-in call (S > H) Payoff: max (ST −X, 0) if St ≤ H for some 0 ≤ t ≤ T , K at expiration otherwise.
Value: (X > H): C + E η = 1, φ = 1
Value: (X < H): A−B +D + E η = 1, φ = 1

2) Up-and-in call (S < H) Payoff: max (ST −X, 0) if St ≥ H for some 0 ≤ t ≤ T , K at expiration otherwise.
Value: (X > H): A+ E η = −1, φ = 1
Value: (X < H): B − C +D + E η = −1, φ = 1

3) Down-and-in put (S > H) Payoff: max (X − ST , 0) if St ≤ H for some 0 ≤ t ≤ T , K at expiration otherwise.
Value: (X > H): B − C +D + E η = 1, φ = −1
Value: (X < H): A+ E η = 1, φ = −1

4) Up-and-in put (S < H) Payoff: max (X − ST , 0) if St ≥ H for some 0 ≤ t ≤ T , K at expiration otherwise.
Value: (X > H): A−B +D + E η = −1, φ = −1
Value: (X < H): C + E η = −1, φ = −1

5) Down-and-out call (S > H) Payoff: max (ST −X, 0) if St > H for all 0 ≤ t ≤ T , K at touch otherwise.
Value: (X > H): A− C + F η = 1, φ = 1
Value: (X < H): B −D + F η = 1, φ = 1
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6) Up-and-out call (S < H) Payoff: max (ST −X, 0) if St < H for all 0 ≤ t ≤ T , K at touch otherwise.
Value: (X > H): F η = −1, φ = 1
Value: (X < H): A−B + C −D + F η = −1, φ = 1

7) Down-and-out put (S > H) Payoff: max (X − ST , 0) if St > H for all 0 ≤ t ≤ T , K at touch otherwise.
Value: (X > H): A−B + C −D + F η = 1, φ = −1
Value: (X < H): F η = 1, φ = −1

8) Up-and-out put (S < H) Payoff: max (X − ST , 0) if St > H for all 0 ≤ t ≤ T , K at touch otherwise.
Value: (X > H): B −D + F η = −1, φ = −1
Value: (X < H): A− C + F η = −1, φ = −1

where
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3 Properties of Instrument

Merton (1973) and Reiner and Rubinstein (1991) have developed the formulae for pricing standard single barrier
options1 — options that have a payoff contingent on whether the barrier is hit during its life.

For a knock-out type option, the payoff is vanilla provided the barrier is not touched during the life of the option,
and the rebate amount otherwise.

For a knock-in type option, the payoff is vanilla provided the barrier is touched during the life of the option, and
the rebate amount otherwise.

1Haug (2007) p.152 4.17.1 Standard Single Barrier Options
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