Single Barrier Asset-at-Expiry Option

Vector Risk Pty Ltd

April 06, 2017

Version 8.0.7905

1 Input to Function

Description	Symbol	min	max	Reasonable range
Underlying	S	0+	$+\infty$	
Barrier level	H	0+	$+\infty$	
Continuous risk-free interest rate	r	0+	$+\infty$	
Continuous secondary rate	q	0+	$+\infty$	
Volatility	σ	0_{+}	$+\infty$	
Time to maturity	T	0_{+}	$+\infty$	
Up or Down	indicator	_	_	"U", "D"
In or Out	тагсагот	_	_	"I", "O"

Table 1: Inputs for Single Barrier Asset-at-Expiry Option pricing function

2 Formula

The value of a *single barrier asset-at-expiry* option is given by ¹

1) Down-and-in (S > H)

Payoff: S_T if $S_t \leq H$ for some $0 \leq t \leq T$, zero otherwise. Value: $A_2 + A_4$

 $\eta = 1,$ $\phi = -1$

2) Up-and-in (S < H)

Payoff: S_T if $S_t \ge H$ for some $0 \le t \le T$, zero otherwise. Value: $A_2 + A_4$

 $\eta = -1,$ $\phi = 1$

3) Down-and-out (S > H)

Payoff: S_T if $S_t > H$ for all $0 \le t \le T$, zero otherwise. Value: $A_2 - A_4$

 $\eta = 1,$ $\phi = 1$

4) Up-and-out (S < H)

Payoff: S_T if $S_t < H$ for all $0 \le t \le T$, zero otherwise.

 $\eta = -1, \qquad \phi = -1$

 $^{^{1}}$ Haug (2007) p.176 4.19.5 Binary Barrier Options

where

$$A_{2} = Se^{-qT}N(\phi h_{1})$$

$$A_{4} = Se^{-qT}\left(\frac{H}{S}\right)^{2(\mu+1)}N(\eta y_{3})$$

$$h_{1} = \frac{\ln\frac{S}{H}}{\sigma\sqrt{T}} + (\mu+1)\sigma\sqrt{T}$$

$$y_{3} = \frac{\ln\frac{H}{S}}{\sigma\sqrt{T}} + (\mu+1)\sigma\sqrt{T}$$

$$\mu = \frac{r - q - \frac{\sigma^{2}}{2}}{\sigma^{2}}.$$

and

ξ	Barrier Type	
-1	In	
1	Out	

3 Properties of Instrument

Reiner and Rubinstein (1991) introduced a set of formulae that can value single barrier asset-at-expiry options. Single barrier asset-at-expiry options are options with the value of the underlying as payoff at expiry, with a single barrier, so that the payoff of the option is dependent on whether the barrier is touched.

For a knock-out type option, the payoff is the asset, provided the barrier is not touched during the life of the option, and zero otherwise.

For a knock-in type option, the payoff is the asset, provided the barrier is touched during the life of the option, and zero otherwise.

Bibliography

Espen Gaarder Haug. The Complete Guide To Option Pricing Formulas. McGraw Hill, New York, 2nd edition, 2007. Eric Reiner and Mark Rubinstein. Unscrambling the binary code. Risk, 4(9):75–83, October 1991.

