Single Barrier Asset-at-Touch Option

Vector Risk Pty Ltd

April 13, 2017

Version 8.0.7970

1 Input to Function

Description	Symbol	min	max	Reasonable range
Underlying	S	0+	$+\infty$	
Barrier level	H	0_{+}	$+\infty$	
Continuous risk-free interest rate	r	0_{+}	$+\infty$	
Continuous secondary rate	q	0+	$+\infty$	
Volatility	σ	0+	$+\infty$	
Time to maturity	T	0+	$+\infty$	
Up or Down	indicator	_	_	"U", "D"

Table 1: Inputs for Single Barrier Asset-at-Touch Option pricing function

2 Formula

The value of a *single barrier asset-at-touch* option is given by ¹

1) Down (S > H)

Payoff: $S_t(H)$ at touch if $S_t \leq H$ for some $0 \leq t \leq T$, zero otherwise. Value: A_5

 $\eta = 1$

2) Up (S < H)

Payoff: $S_t(H)$ at touch if $S_t \geq H$ for some $0 \leq t \leq T$, zero otherwise.

Value: A_5 $\eta = -1$

where

$$A_{5} = H \left[\left(\frac{H}{S} \right)^{\mu + \lambda} N \left(\eta z \right) + \left(\frac{H}{S} \right)^{\mu - \lambda} N \left(\eta z - 2\eta \lambda \sigma \sqrt{T} \right) \right]$$

$$z = \frac{\ln \frac{H}{S}}{\sigma \sqrt{T}} + \lambda \sigma \sqrt{T} \qquad \qquad \mu = \frac{r - q - \frac{\sigma^{2}}{2}}{\sigma^{2}} \qquad \qquad \lambda = \sqrt{\mu^{2} + \frac{2r}{\sigma^{2}}}.$$

3 Properties of Instrument

Reiner and Rubinstein (1991) introduced a set of formulae that can value single barrier asset-at-touch options. Single barrier asset-at-touch options are options with asset as payoff at the time the barrier is touched. If the barrier is not touched, then the payoff is zero.

¹Haug (2007) p.176 4.19.5 Binary Barrier Options

2 Bibliography

Bibliography

Espen Gaarder Haug. The Complete Guide To Option Pricing Formulas. McGraw Hill, New York, 2nd edition, 2007. Eric Reiner and Mark Rubinstein. Unscrambling the binary code. Risk, 4(9):75–83, October 1991.

