Single Barrier Cash-at-Expiry Option

Vector Risk Pty Ltd

April 13, 2017

Version 8.0.7970

1 Input to Function

Description	Symbol	min	max	Reasonable range
Underlying	S	0+	$+\infty$	
Barrier level	H	0_{+}	$+\infty$	
Cash amount payoff	K	0_{+}	$+\infty$	
Continuous risk-free interest rate	r	0_{+}	$+\infty$	
Continuous secondary rate	q	0_{+}	$+\infty$	
Volatility	σ	0_{+}	$+\infty$	
Time to maturity	T	0_{+}	$+\infty$	
Up or Down	indicator	_	_	"U", "D"
In or Out	тинсинот	_	_	"I", "O"

Table 1: Inputs for Single Barrier Cash-at-Expiry Option pricing function

2 Formula

The value of a single barrier cash-at-expiry option is given by 1

1) Down-and-in (S > H)

Payoff:
$$K$$
 at expiration if $S_t \leq H$ for some $0 \leq t \leq T$, zero otherwise. Value: $B_2 + B_4$

$$\eta = 1,$$
 $\phi = -1$

2) Up-and-in (S < H)

Payoff:
$$K$$
 at expiration if $S_t \ge H$ for some $0 \le t \le T$, zero otherwise. Value: $B_2 + B_4$

$$\eta = -1,$$
 $\phi = 1$

3) Down-and-out (S > H)

Payoff:
$$K$$
 at expiration if $S_t > H$ for all $0 \le t \le T$, zero otherwise. Value: $B_2 - B_4$

$$\eta = 1,$$
 $\phi = 1$

4) Up-and-out (S < H)

Payoff:
$$K$$
 at expiration if $S_t < H$ for all $0 \le t \le T$, zero otherwise.
Value: $B_2 - B_4$

$$\eta = -1,$$
 $\phi = -1$

 $^{^1}$ Haug (2007) p.176 4.19.5 Binary Barrier Options

where

$$B_{2} = Ke^{-rT}N(\phi h_{2})$$

$$B_{4} = Ke^{-rT}\left(\frac{H}{S}\right)^{2\mu}N(\eta y_{4})$$

$$h_{2} = \frac{\ln\frac{S}{H}}{\sigma\sqrt{T}} + \mu\sigma\sqrt{T}$$

$$y_{4} = \frac{\ln\frac{H}{S}}{\sigma\sqrt{T}} + \mu\sigma\sqrt{T}$$

$$\mu = \frac{r - q - \frac{\sigma^{2}}{2}}{\sigma^{2}},$$

and

ξ	Barrier Type	
-1	In	
1	Out	

3 Properties of Instrument

Reiner and Rubinstein (1991) introduced a set of formulae that can value single barrier cash-at-expiry options. Single barrier cash-at-expiry options are options with a cash amount as payoff at expiry, with a single barrier, so that the option payoff is dependent on whether the barrier is touched.

For a knock-out type option, the payoff is K provided the barrier is not touched during the life of the option, and zero otherwise.

For a knock-in type option, the payoff is K provided the barrier is touched during the life of the option, and zero otherwise.

Bibliography

Espen Gaarder Haug. The Complete Guide To Option Pricing Formulas. McGraw Hill, New York, 2nd edition, 2007. Eric Reiner and Mark Rubinstein. Unscrambling the binary code. Risk, 4(9):75–83, October 1991.

