Single Partial Barrier Early Finish Option

Vector Risk Pty Ltd

April 06, 2017

Version 8.0.7905

1 Input to Function

Description	Symbol	min	max	Reasonable range
Underlying price	S	0^{+}	$+\infty$	
Strike price	X	0^{+}	$+\infty$	
Barrier level	H	0^{+}	$+\infty$	
Continuous risk-free interest rate until t_1	r_1	0^{+}	$+\infty$	
Continuous secondary rate until t_1	q_1	0^{+}	$+\infty$	
Volatility until t_1	σ_1	0^{+}	$+\infty$	
Time to barrier end	t_1	0^{+}	$< T_2$	
Continuous risk-free interest rate until T_2	r_2	0^{+}	$+\infty$	
Continuous secondary rate until T_2	q_2	0^{+}	$+\infty$	
Volatility until T_2	σ_2	0^{+}	$+\infty$	
Time to option maturity	T_2	$> t_1$	$+\infty$	
Put or Call		_	_	"P", "C"
Up or Down	indicator	_	_	"U", "D"
In or Out		_	_	"I", "O"

Table 1: Inputs for Single Partial Barrier Early Finish Option pricing function

2 Formula

The value of a single partial barrier early finish option is given by

$$\begin{pmatrix} \phi S e^{-q_2 T_2} \left[N_2 \left(\xi \eta h_1, \phi b_1; \xi \eta \phi \rho \right) - \xi \left(\frac{H}{S}\right)^{2(\mu_1 + 1)} N_2 \left(\eta f_1, \phi g_1; \eta \phi \rho \right) \right] \\ - \phi X e^{-r_2 T_2} \left[N_2 \left(\xi \eta h_2, \phi b_2; \xi \eta \phi \rho \right) - \xi \left(\frac{H}{S}\right)^{2\mu_1} N_2 \left(\eta f_2, \phi g_2; \eta \phi \rho \right) \right], \end{cases}$$

where

$$h_{1} = \frac{\ln \frac{S}{H} + \left(r_{1} - q_{1} + \frac{\sigma_{1}^{2}}{2}\right)t_{1}}{\sigma_{1}\sqrt{t_{1}}} \qquad h_{2} = h_{1} - \sigma_{1}\sqrt{t_{1}}$$

$$f_{1} = \frac{\ln \frac{H}{S} + \left(r_{1} - q_{1} + \frac{\sigma_{1}^{2}}{2}\right)t_{1}}{\sigma_{1}\sqrt{t_{1}}} \qquad f_{2} = f_{1} - \sigma_{1}\sqrt{t_{1}}$$

$$g_{1} = \frac{\ln \frac{H^{2}}{SX} + \left(r_{2} - q_{2} + \frac{\sigma_{2}^{2}}{2}\right)T_{2}}{\sigma_{2}\sqrt{T_{2}}} \qquad g_{2} = g_{1} - \sigma_{2}\sqrt{T_{2}}$$

$$b_{1} = \frac{\ln \frac{S}{X} + \left(r_{2} - q_{2} + \frac{\sigma_{2}^{2}}{2}\right)T_{2}}{\sigma_{2}\sqrt{T_{2}}} \qquad \qquad b_{2} = b_{1} - \sigma_{2}\sqrt{T_{2}}$$
$$\mu_{1} = \frac{r_{1} - q_{1} - \frac{\sigma_{1}^{2}}{2}}{\sigma_{1}^{2}} \qquad \qquad \rho = \frac{\sigma_{1}\sqrt{t_{1}}}{\sigma_{2}\sqrt{T_{2}}},$$

and

ϕ	Option Type	η	Barrier Direction	ξ	Barrier Type
-1	Put	-1	Up	-1	In
1	Call	1	Down	1	Out

3 Properties of Instrument

In a standard single barrier option, the barrier is observed for its entire life, from time t = 0 to time $t = T_{exp} = T_2$, with the value of the option determined accordingly. In a partial barrier option, the period of observation is a subset of the life of the option. Consider times t_1 such that $0 < t_1 < T_2$.

In an early finish single partial barrier option, the barrier is active for the time frame $0 \le t \le t_1$. If the barrier is touched during this time, the option value is changed accordingly. Touching or crossing the barrier during $t_1 < t \le T_2$ does not affect the value of the option.

Formulae for pricing this type of option were originally published by Heynen and Kat $(1994)^1$.

Bibliography

Espen Gaarder Haug. The Complete Guide To Option Pricing Formulas. McGraw Hill, New York, 2nd edition, 2007.

Ronald C. Heynen and Harry M. Kat. Partial barrier options. *The Journal of Financial Engineering*, 3(3/4):253–274, September/December 1994.

¹Haug (2007) p.160 4.17.4 Partial-Time Single-Asset Barrier Options