Single Pin Barrier Option

Vector Risk Pty Ltd April 06, 2017 Version 8.0.7905

1 Input to Function

Description	Symbol	min	max	Reasonable range
Underlying price	S	0+	$+\infty$	
Strike price	X	0_{+}	$+\infty$	
Barrier level	H	0+	$+\infty$	
Continuous risk-free interest rate till t_1	r_1	0+	$+\infty$	
Continuous secondary rate till t_1	q_1	0+	$+\infty$	
Volatility till t_1	σ_1	0+	$+\infty$	
Time to barrier observation	t_1	0+	$< T_2$	
Continuous risk-free interest rate till T_2	r_2	0+	$+\infty$	
Continuous secondary rate till T_2	q_2	0+	$+\infty$	
Volatility till T_2	σ_2	0+	$+\infty$	
Time to option maturity	T_2	$> t_1$	$+\infty$	
Put or Call		_	_	"P", "C"
Up or Down	indicator	_	_	"U", "D"
In or Out		_	_	"I", "O"

Table 1: Inputs for Single Pin Barrier Option pricing function

2 Formula

The value of a single pin barrier option is given by

$$(\phi S e^{-q_2 T_2} N_2 (\eta h_1, \phi b_1; \eta \phi \rho) - \phi X e^{-r_2 T_2} N_2 (\eta h_2, \phi b_2; \eta \phi \rho),$$

where

$$h_{1} = \frac{\ln \frac{S}{H} + \left(r_{1} - q_{1} + \frac{\sigma_{1}^{2}}{2}\right) t_{1}}{\sigma_{1}\sqrt{t_{1}}} \qquad h_{2} = h_{1} - \sigma_{1}\sqrt{t_{1}}$$

$$b_{1} = \frac{\ln \frac{S}{X} + \left(r_{2} - q_{2} + \frac{\sigma_{2}^{2}}{2}\right) T_{2}}{\sigma_{2}\sqrt{T_{2}}} \qquad b_{2} = b_{1} - \sigma_{2}\sqrt{T_{2}}$$

$$\rho = \frac{\sigma_{1}\sqrt{t_{1}}}{\sigma_{2}\sqrt{T_{2}}}.$$

ϕ	Option Type	η	Barrier Type
-1	Put	-1	Up-and-out/Down-and-in
_ 1	Call	_ 1	Down-and-out/Up-and-in

3 Properties of Instrument

A single pin barrier option, is an option with a barrier applicable only at one point, time t_1 , during the option's life. An up-and-in, or down-and-out, single pin barrier option has vanilla payoff, provided the spot rate is *above* the barrier level at time t_1 . For a down-and-in or up-and-out single pin barrier option, the payoff is vanilla provided the spot rate is *below* the barrier level at time t_1 .

