Single Window Barrier Option

Vector Risk Pty Ltd

April 13, 2017

Version 8.0.7970

1 Input to function

Description	Symbol	min	max	Reasonable range
Underlying	S	0^{+}	$+\infty$	
Strike	X	0^{+}	$+\infty$	
Barrier	H	0^{+}	$+\infty$	
Continuous risk-free interest rate until t_1	r_1	0^{+}	$+\infty$	
Continuous secondary rate until t_1	q_1	0^{+}	$+\infty$	
Volatility until t_1	σ_1	0^{+}	$+\infty$	
Time to start of window	t_1	0^{+}	$< t_2$	
Continuous risk-free interest rate until t_2	r_2	0^{+}	$+\infty$	
Continuous secondary rate until t_2	q_2	0^{+}	$+\infty$	
Volatility until t_2	σ_2	0^{+}	$+\infty$	
Time to end of window	t_2	$> t_1$	$< T_{3}$	
Continuous risk-free interest rate until T_3	r_3	0^{+}	$+\infty$	
Continuous secondary rate until T_3	q_3	0^{+}	$+\infty$	
Volatility until T_3	σ_3	0^{+}	$+\infty$	
Time to maturity	T_3	$> t_2$	$+\infty$	
Put or Call		_	_	"P", "C"
Up or Down	indicator	_	_	"U", "D"
In or Out		_	_	"I", "O"

Table 1: Inputs for Single Window Barrier Option

2 Formula

The value of a Single Window Barrier knock-out type option is given by

($\phi S e^{-q_3 T_3} \left[N_3 \left(r \right) \right]$	$\eta x_1, \eta c_1, \phi d_1; \rho_{12}, \eta \phi \rho_{13}, \eta \phi \rho_{23}) - \left(\frac{H}{S}e^{\beta t_1}\right)^{2(\mu_2+1)} N_3\left(-\eta x_3, \eta c_3, \phi d_3; -\rho_{12}, -\eta \phi \rho_{13}, \eta \phi \rho_{23}\right)$	
	$-\phi X e^{-r_3 T_3} \left[I \right]$	$N_{3}(\eta x_{2}, \eta c_{2}, \phi d_{2}; \rho_{12}, \eta \phi \rho_{13}, \eta \phi \rho_{23}) - \left(\frac{H}{S}e^{\beta t_{1}}\right)^{2\mu_{2}} N_{3}(-\eta x_{4}, \eta c_{4}, \phi d_{4}; -\rho_{12}, -\eta \phi \rho_{13}, \eta \phi \rho_{23})]$, /

where

ϕ	Option Type	η	Barrier Direction		
-1	Put	-1	Up		
1	Call	1	Down		

 $\quad \text{and} \quad$

$$\begin{aligned} x_1 &= \frac{\ln \frac{S}{H} + \left(r_1 - q_1 + \frac{\sigma_1^2}{2}\right)t_1}{\sigma_1\sqrt{t_1}} & x_2 = x_1 - \sigma_1\sqrt{t_1} \\ x_3 &= x_1 + 2\frac{\ln \frac{H}{S} + \beta}{\sigma_1\sqrt{t_1}} & x_4 = x_3 - \sigma_1\sqrt{t_1} \\ c_1 &= \frac{\ln \frac{S}{H} + \left(r_2 - q_2 + \frac{\sigma_2^2}{2}\right)t_2}{\sigma_2\sqrt{t_2}} & c_2 = c_1 - \sigma_2\sqrt{t_2} \\ c_3 &= c_1 + 2\frac{\ln \frac{H}{S} + \beta}{\sigma_2\sqrt{t_2}} & c_4 = c_3 - \sigma_2\sqrt{t_2} \\ d_1 &= \frac{\ln \frac{S}{X} + \left(r_3 - q_3 + \frac{\sigma_3^2}{2}\right)T_3}{\sigma_3\sqrt{T_3}} & d_2 = d_1 - \sigma_3\sqrt{T_3} \\ d_3 &= d_1 + 2\frac{\ln \frac{H}{S} + \beta}{\sigma_3\sqrt{T_3}} & d_4 = d_3 - \sigma_3\sqrt{T_3} \\ \rho_{12} &= \frac{\sigma_1\sqrt{t_1}}{\sigma_2\sqrt{t_2}} & \rho_{13} = \frac{\sigma_1\sqrt{t_1}}{\sigma_3\sqrt{T_3}} \\ \rho_{23} &= \frac{\sigma_2\sqrt{t_2}}{\sigma_3\sqrt{T_3}} & \beta = (\mu_2 - \mu_1)\sigma_1^2 t_1 \\ \mu_1 &= \frac{r_1 - q_1 - \frac{\sigma_1^2}{2}}{\sigma_1^2} & \mu_2 = \frac{\left(r_2 - q_2 - \frac{\sigma_2^2}{2}\right)t_2 - \mu_1\sigma_1^2 t_1}{\sigma_2^2 t_2 - \sigma_1^2 t_1}. \end{aligned}$$

3 Properties of Instrument

A single window barrier option is a single barrier option monitored only within a specified segment of the option's life. Let the option run from times t_0 to T_3 , with a 'window' existing between times t_1 and t_2 , such that $t_0 < t_1 < t_2 < T_3$. If the barrier is touched or crossed during $t_1 \rightarrow t_2$, the option is valued accordingly. If equality holds, the option ceases to be a window option, becoming either partial barrier or full barrier options.

Touching or crossing the barrier before t_1 or after t_2 does not affect the value of the option. We define only the value of a knock-out type single window barrier — as with all barriers, corresponding knock-in type options can be valued by taking the difference between corresponding vanilla and knock-out option.