Variable Purchase Option

Vector Risk Pty Ltd

April 06, 2017

Version 8.0.7905

1 Inputs to Function

_

Description	Symbol	min	max	$Reasonable\ range$
Underlying	S	0^{+}	$+\infty$	
Strike	X	0^{+}	$+\infty$	
Lower level	L	0^{+}	$\leq U$	
Upper level	U	$\geq L$	$+\infty$	
Discount	D	0^{+}	< 1	
Continuous risk-free interest rate	r	0^{+}	$+\infty$	
Continuous secondary rate	q	0^{+}	$+\infty$	
Volatility	σ	0^{+}	$+\infty$	
Time to maturity	T	0^{+}	$+\infty$	

Table 1: Inputs for Variable Purchase Option pricing function

2 Formula

Haug $(2007)^1$ states that *variable purchase* options can be valued using the Handley (2000) formula. For efficient purpose, our Risk Engine uses the following formula instead.

$$N_{\min}Se^{-qT}N(d_1) + N_{\max}Se^{-qT}[N(d_5) - N(d_3)] + \frac{X}{1 - D}e^{-rT}[N(d_4) - N(d_2)] - Xe^{-rT}N(d_6),$$

where

$$d_{1} = \frac{\ln \frac{S}{U} + \left(r - q + \frac{\sigma^{2}}{2}\right)T}{\sigma\sqrt{T}} \qquad \qquad d_{2} = d_{1} - \sigma\sqrt{T}$$

$$d_{3} = \frac{\ln \frac{S}{L} + \left(r - q + \frac{\sigma^{2}}{2}\right)T}{\sigma\sqrt{T}} \qquad \qquad d_{4} = d_{3} - \sigma\sqrt{T}$$

$$d_{5} = \frac{\ln \frac{S}{L(1-D)} + \left(r - q + \frac{\sigma^{2}}{2}\right)T}{\sigma\sqrt{T}} \qquad \qquad d_{6} = d_{5} - \sigma\sqrt{T}$$

$$N_{\min} = \frac{X}{U(1-D)} \qquad \qquad N_{\max} = \frac{X}{L(1-D)}$$

 $^1\mathrm{Haug}$ (2007) p.112, 4.1 Variable Purchase Options

VectorRisk

3 Properties of Instrument

A variable purchase option is a call option on a stochastic number of underlying shares. The actual number of underlying shares is calculated at *maturity* in accordance with a formula which is specified at the *time of issue*. The number of underlying shares at maturity is

$$N = \frac{X}{S_T(1-D)},$$

with S_T representing the value of the underlying at expiry.

The payoff of the option at maturity is

 $\max\left(NS_T - X, 0\right).$

Further, the number of underlying shares is often subject to a minimum and maximum. The number of underlying shares is

$$\begin{cases} N_{\max} = \frac{X}{L(1-D)}; & S_T < L, \\ \frac{X}{S_T(1-D)}; & L \le S_T \le U, \\ N_{\min} = \frac{X}{U(1-D)}; & S_T > U. \end{cases}$$

Table 2 illustrates the payoff for a variable purchase option

Condition	Payoff
$S_T < L(1 - D)$ $L(1 - D) \le S_T < L$ $L \le S_T \le U$ $S_T > U$	$\frac{0}{\frac{XS_T}{L(1-D)} - X}$ $\frac{D}{\frac{1-D}{1-D}X}$ $\frac{XS_T}{U(1-D)} - X$

Table 2: Payoff at maturity for variable purchase option

Bibliography

John Christopher Handley. Variable purchase option. *Review of Derivatives Research*, 4(3):219–230, October 2000. Espen Gaarder Haug. *The Complete Guide To Option Pricing Formulas*. McGraw Hill, New York, 2nd edition, 2007.

Glossary

Risk Engine The Vector Risk market risk and credit risk system.